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Extracting 3D information from a 2D image?

* Shading, Texture, Focus, Perspective, ...

e Humans learn how 3D

structure looks ina 2D image

* |[n computer vision, we require
a model of 3D-to-2D transform
to understand the 3D content




Single-view geometry

e Points in a world 3D
coordinate system (c.s.)

* Project to image plane

into 2D pixels

Ca*m\era 3D c.s.

Two kinds of projection:

1. “Extrinsic” projection
3D World = 3D Camera

2. “Intrinsic” projection .

World 3D
3D Camera = 2D Image coordinate system




Consider “Intrinsic” projection first

Recall the image formation process:

~ Pointin 3D

In jmage

* A point written in camera 3D coordinate system (meters)
* Projected to camera image plane (meters)
* Projected to discretized image (pixels)

e Let’s derive transformations for a pinhole cameral!
g



Homogeneous coordinates

* Euclidean geometry uses Cartesian coordinate system

e But for a projective geometry, homogenous coordinates are much more
appropriate

 E.g., can easily encode a point in infinity (try that in Euclidean...)

Cartesian Homogeneous Multiplying by a scalar (# 0) value
form form does not change a point!
[ X } —> | ¢ r wr
Y Y y | = | wy
L 1] w

* From homogeneous system to Euclidian:
Simply divide by the last coordinate to make it 1.



Camera coordinate system (meters)
‘ Y

_— 7
\ pr]ncipal axis

centre image plane

\

camera

* Principal axis:
A line from camera center perpendicular to image plane.

* Principal point (p): A point where the principal axis punctures the image plane.

 Normalized (camera) coordinate system: 2D system with origin at the principal point.




A pinhole camera revisited
“i

| “Sideways” view

\

camera

centre image plane
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)15 3D pointin worId C.S. 2D projection to image plane ) fX/Z
2 | —[X.Y.2] = [fX/1Z,8Y /2] —| fY/Z
I 1 | - Rewrite in homogeneous coordinates | 1 _
* Projection as vector-matrix multiplication: / AN
_ (X
(fX) | f 0 v
In 3D camera c.s.
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From image plane to image pixels

* Change of coordinate system to image corner
i‘l‘.’

* Normalized camera coordinate system:

T
Origin in principal pointp = [px, py] :

* Image coordinate system:
Origin in the corner of the image sensor.




From image plane to image pixels (1/3)

* Change the c.s. origin by the principal point p:

e Write the transformation: I

(X,Y,Z)> (FX/Z+p,, fYIZ+p,)

* Rewrite in vector-matrix multiplication:

i LX)
(fX+Zp,) |[f 0 p, O y
fY+Zp,|=[0 f p, 0] | X=PX
.z J |00 1 0

— 1




From image plane to image pixels (2/3)

* Projection to a sensor of size W X Hg (in meters).

* Pixels are arranged into a rectangular

M, X M,, pixels matrix.

* Letm, = M, /Wsand m, = M,,/Hg.

* Construct projection to pixels:

Just multiply by another matrix:




From image plane to image pixels (3/3)

* In general difficult to guarantee a rectangular sensor.

Rectangular Skewed
Rectangular Skewed
) (X ) (X
(x) |, 0 x, O y (x) e, s X%, O ::
y=0ayyOOZ y=0ayyOOZ
lz) |0 0 1 0 lz) |0 0 1 0

Projection matrix Py \ 1 Projection matrix Py\ 1)




Calibration matrix

* Expand the projection matrix P,

] o LX)
(x) [ s x]1 00 0]
y|=| 0 a ¥ |0 100
(z) [0 0 1]0 01 0]

\
P, =K[1]0]

* Calibration matrix K:
“Prescribes projection of 3D point in camera c.s. into pixles

I/I

‘o, S X
K — OX . ’ Q: What is the meaning of each
- 0 Oy );0 element of the calibration matrix?




Single-view geometry

* Points in a world 3D
coordinate system (c.s.)

* Project to image plane
into 2D pixels

Ca*m\era 3Dc.s.

Two kinds of projection:

1. “Extrinsic” projection
3D World = 3D Camera

0 .y
2. “Intrinsic” projection :
World 3D
3D Camera =2 2D Image coordinate system




From world c.s. to 3D camera c.s.

 The 3D camera coordinate system (c.s.) is related to 3D world c.s. by a

~

rotation matrix R and translation £ = C.

R ... How to rotate the world c.s.
about its own origin to align
it with the camera c.s.
... Camera origin in world c.s.
... Point in 3D world c.s.
X .qm ... Same point X, but
written in 3D camera c.s.

D)l N

World-to-camera c.s. transformation:

X =R(X-C)
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From world c.s. to 3D camera c.s.

e Euclidean form:

~

X, =R(X-C)

* Rewrite by using homogeneous coordinates:

—_— cam —_—
Xcam — 1 X= 1 >
Eal World c.s.




Putting it all together

* Camera is specified by a calibration matrix K, the

projection center in world c.s. € and rotation matrix R.

* A 3D pointin world coordinates (homogeneous) X, Xcam = [13 —ﬂx
is projected into pixels x by the following relation:

X =K[110]X,,, = K| R|-RC |X=PX

P=K[R[t], t=-RC

Note the structure of the projection matrix!

Q: What needs to be known to construct the projection matrix?




Lens adds a nasty nonlinearity

Straight lines are no longer straight! ——

Nonlinearity should be removed
to apply a pinhole model!

Image Plane

radially distorted image radial distortion removed  Lens

g g

square Object



Lens adds a nasty nonlinearity

* Lens distortion assumed radially symmetric

* Radially expand an image to un-distort
distorted undistorted

Ry

l——————--r--—————ﬂ—

(p.0) > (p.0)
* In this transformation, only the radius of transformed point changes, but

the angle remains unchanged.
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Lens adds a nasty nonlinearity

* What kind of analytic function to use for transforming p?

_ &9

* Typically, a polynomial is used (374 degree good enough):

33d‘|‘( d—Ca:)(K1,02—I—K2p4—|—...)
ﬁ Ya + (ya — cy) (K1p? + Kop* +...)

 Parameters estimated by adjusting them until straight lines become straight.

(in Matlab use fminsearch for optimization method)



Summary: camera parameters Degrees of freedom (DoF)

* [ntrinsic parameters: DoF
* Principal point coordinates 2
& s p
* Focal length 1 K = &, py
* Pixel scaling factor (rectangular pixels) 1 11
e Shear (non-rectangular pixels) 1
* Radial distortion
* Extrinsic parameters
* Rotation R 3
* Translation t :
e Camera projection matrix P= K[R | '[]
= A pinhole camera: 9 DoF
—> Camera with rectangular pixels: 10 DoF
—> General camera (skewed pixes): 11 DoF
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Looking at flat objects

* A camera looking at the some planar object

* How would it look if the camera changed position?

* A plane-to-plane projection is called a Homography




Apps: Panoramas, Augmented

reality, etc.

Ouverall:3.42ms
Find Pts:1.25ms
Track Pts: 8.32 ms
Features:1.16 ms
Outliers: .50 ms
Pose: 8.19 ms

Corners: 166
Matched Features: 29
Wrong Rotation: 8
Bad Linetest: 8
Bad Homographytest: 8
Correct: 29
From Cache: 8
From ActiveSearch: 20
Levels: 000000 BB0B0
Rotation: 6
Aug. Reproj. Err:1.31



Homography estimation from correspondences

 Example of four corresponding points

X H, Hp, Hj|| X
Wx’ = Hx WY | =|Hy Hy Hylfly
_1_ Hy, Hy Hy _1_

 The elements of H can be estimated by applying
a direct linear transform (DLT)!



Matrix form of a vector product

* Before we continue...

c=axb=|a




Homography estimation by DLT

WX, = HX.
_Xli_ _Hll

W y'i — H21
i 1 | H,,
X; xHx; =0

I

12

T

22
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Change the vector product into vector-matrix:

- -
Xi hl
.
Xi h2
-
_xih3_

X

[X. ]

S
X h,
T
X; h,

-
_xih3_

0
1

-V

-1 vy, ]
0 -—-x'
X' 0

S
X: h,
T
Xi h2

:




Homography estimation by DLT

X xHx; =0
Multiply in the matrix terms...
0 -1 vy xh | | —x;h, +y';x{h, _
X xHx. = 1 0 —x"|[xh,|=| xh —x"xh,
__yli Xli 0 | Xiqu _y'i XiTh1+Xli XiThz

Expose the homography terms h4, h,, h;into a single vector:

T T T B [
0 —X; YiX L
X xHx. =| X/ 0" —x'x ||h,|=0
I T 1 T T
__ini X X 0 __q3_

A single point contains three coordinates, but gives only two linearly independent equations



Homography estimation by DLT

The n points yields a
system of equations:

AT T I T
0 X1 YiX Homogeneous system!
T T v T [ h ) ° ' |
Xl O —X 1 X]_ hl

X'1<—)X1 h2 =0 Ah:O

n Correspondences...

X2 2%, 0" Xy Y'uX, [\Ns)
X, 0" —x' x5

SVD

- - T
l d11 Vll V19 [V v ]
A=UDV' =U . S I h=t2% ’V > 921 Minimizes the mean squared error.
99
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Reshape h into H.




Preconditioning

 DLT works well if the corresponding points are normalized separately in

each view!

* Transformation T,

e Subtract the average

e Scale to average distance 1.

pre

—]

I
o O 2
o O O
_ Q O
o
=
@D

* Set [a,b,c,d] such that the mean of the points X; is zero and their variance is 1.



Homography estimation

1. Apply preconditioning (i.e., multiply by the transform matrices) to
points in each image separately:

X=T X  X=T,.X

2. Apply DLT to estimate the homography H: %'=HX

3. Transform back the solution to remove preconditioning: H = T"1|:|TIore

pre
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Flagellation of Christ (Piero della Francesca, ~1460)

Check out : Secret Knowledge by David Hockney, 2002



https://www.imdb.com/title/tt0387965/

Marker-based Augmented Reality

Yy X =1[0,}, 0]

x$”) = [1,1,0] x = HxW)
x = K[ry,r,, t]xW)
T % = [0,0,0] P=K|r,, 1,13, 1]

x) — 11,0,0]7 World c.s.




Vanishing points

 What happens with projection of parallel lines?
Vanishing point!

7 ;*"“?‘v'i =
S
~/AE BTN, T

* Sets of 3D parallel lines intersect at a vanishing point!




Vanishing points

* Where in image do sets of 3D parallel lines projections intersect?

A 3D point: _ _
X
Camera o .
projection /Vanlshmg point (VP)! X = Y
center [ . 7
~F X Ground plane Perspective projection:
X / X e
4N ParallelFi?Es x — r | fX / A
. o — —
Y fY/Z

* Note that this image shows a special case with lines parallel with
principal axis.

* But our derivation of VP will be general.




Vanishing point: calculation (1/2)

e Consider a point on one of parallel lines

A 3D point A and vector D:
g?cr)?:g'fion /Vanishing point! X A | X D ]
center [ 7 A= YA D= YD
‘ Z
B Ground plane LA — ZD -
X Ve A point on a line:
25D %k X(4)=A+4D
Perspective projection: : )
- [(Xa+2AXDp) ]
X(A) — - — fX/Z — (ZA—I_)\ZD)
fY/Z f(Ya+AYD)
Yy
(ZA -I—)\ZD) _




Vanishing point: calculation (2/2)

* Now push the point far away from the camera... VR
D
D=|Y,
C . L
pzraor?eecrtaion Vanishing point! As the point is pushed towards | Zp |
center d , infinity, the projection approaches
> the vanishing point v!
X S
; ~~~~~~ N S --—----------"---""‘----n-
Projection of a point at infinity, i.e., X(00): - . Vanishing point!
s X, 12,
L, +AL
v=limx(2)=lim| % TP v=| P P
A—>00 A—>00 ¢ YA+ﬁ’YD I .I:YD /ZD ]
| L AL,




Vanishing points

* VP depends on direction D, not on point A.

* A different set of parallel lines correspond to a
different VP!

* Horizon is formed by connecting

the vanishing points of a plane

horizon \'
~

line ~ vanishing

point




Vanishing points

* Horizon is a collection of all the vanishing points corresponding to a

set of parallel planes. o ,
Vanishing point!

horizon

e Sets of 3D parallel lines intersect at a vanishing point!




Use IMU to estimate horizon projection

Q Camera tilt estimated from IMU,
horizon projected into image

Bovcon, Pers, Mandeljc, Kristan, Stereo Obstacle Detection for Unmanned
Surface Vehicles by IMU-assisted Semantic Segmentation, RAS 2018



https://arxiv.org/abs/1802.07956

Example: Use IMU for obstacle detection

Input image and IMU data Segmentation mask Frequency weighted |IOU: 84.38%
: - Mean pixel accuracy: 96.42%

Mean |OU: 94.12%

WaSR: Wat er e
. W. Edge; 3.6px [0.3%] G R
Sepa ration and Pra— T A —_—— Total TP 0 EI m

Refinement Network - Total FP: 0
Total FN: O

—-0.0840  0.0700 -3.7050 Total F1: NaN%

-
5
e k=
g 3
E c
5 S
g 3
£ £
o
a1}
° 5
« 3

Encoder Decoder

Bovcon, Kristan, A water-obstacle separation and refinement network for unmanned surface vehicles, ICRA 2020



https://github.com/bborja/wasr_network

Camera calibration

* Assume a fixed camera in 3D that you want to use for measuring
AX=PX What is this distance in mm?

In principle (not really that easy...):
_ p-1 _ p-1

X, =P X, X,=PX,

d :H Xl - Xz H

What is required to form P?

[ 3

x=K|R|-RC |X S vordcs
https://vizworld.com/2017/04/watsons-cognitive-
visual-inspection-in-lean-manufacturing-processes/




Camera calibration

 Camera calibration: estimate projection matrix P from a known
calibration object.

e Corner structures on calibration object for easy and accurate detection

* Coordinates (meters) in 3D known X;

e Coordinates (pixels) in 2D projection detected

World c.s.




Camera calibration: point detection

* Proper calibration requires measuring the points at sub-pixel accuracy.

* Highly depends on the calibration pattern.

Gives better results

 How many point correspondences are required?

e Arule of thumb:

* Number of constraints exceeds the number of unknowns by a factor 5.

e = For 11 parameters in P, use at least 28 points (2 egs. per point pair).




Camera calibration by DLT

e Standard approach for parameter estimation (DLT)

AX; =PX, .
X1 |t R P
AYi|=|Pun P Py
B 1 1 L Py B By
X. xPX. =0

Same approach as with Homography:

OT _XiT YixiT 31
X' 00 —xX'||P |=0
__yixiT XiXiT OT 33




Camera calibration by DLT

0 X yX] '
X7 0" —xX| [P}
P, |=0 AP
0' X-; — ynX:I- KPSJ
XT 0" —xXI

n

0

e Phas 11 DoF (12 parameters, but the scale is arbitrary).

* Asingle 2D-3D correspondence gives two linearly independent equations.
* Homogeneous system is solved by SVD of A.

e Solution requires at least 5 7 correspondences.

e (Caution: coplanar points yield degenerate solutions.

* Apply preconditioning as with Homography estimation.



Camera calibration

* Once the projection matrix P is known, we need to figure out its

external and internal parameters, i.e., P=P,_.P_ .=K[R|t].

ext

* This is @ matrix decomposition problem.

* Intrinsic and extrinsic matrix have a particular form, that makes such a

decomposition possible.

* Solution can be found in Forsyth&Ponce, Chapter 3.2, 3.3. for those

who are interested to learn more about camera calibration.




Camera calibration: practical advices

* The DLT implementation is pretty simple, but it is an algebraic solution.

* In reality we would like to minimize a re-projection error:

Measured projection of
a point X; -

Reprojection error

E fO r th e |'th pOl nt.-- = -' — __:-::‘_'_':'_'_'__________--——-- XI
g = P
yi

ok -PX)
= _ pX

\J Re-projected 3D point by

the estimated P.

 The re-projection error:

E(p):ZililgiTgi




Camera calibration: practical advices

* Nonlinear optimization required (Hartley&Zisserman, Chapter 7.2)
* In practice, initialize by (preconditioned) DLT.

* For practical applications you will need to first remove the radial
distortion (H&Z sec. 7.4, or F&P sec. 3.3.).

* Fast and accurate approaches for P matrix estimation still an active

research topic




Multiplane camera calibration

[image1 (1-4] EARE|| Qimager 1-4] ERE|] Cimaoe (1-4] EREE || Ciinages 1-4]) ERE QY inages 1-4) B ET

* Widely-used approach

* Requires only many

images of a single plane

* Does not require knowing
positions/orientations

£ Imageld [:4... M= ER

"

e o - - i '1-
l g W | LA
_ 1 _ o | g8 Pl
¥ 4 q ; '%"L i - -"'.:"_-_‘..
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- o e e
e FEEEN

e Good code available online! e R T A&

- OpenCV|ibrary: http://www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/



http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/
http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

. Thanks.




